

University of Idaho | PO BOX 443301 Moscow, ID 83844-3301 208.885.6429 pbac@uidaho.edu | uidaho.edu/pbac

April 21, 2022 Meeting Minutes

Moscow UI Facilities Services Center, Ponderosa Meeting Room

Committee business conducted by motion is indicated in ** Business Decision

For discussion details related to other agenda items, refer to the video recording of the meeting at https://youtu.be/aNASTRxHUtc during the time period indicated within parentheses (HH:MM:SS)

Attendance

X: In-person attendance V: Video attendance

X	UI: Tim Link,	V	WSU: Jeff Lannigan,
	Professor of Hydrology		Facilities Services
Х	UI: Rusty Vineyard,		WSU: Jason Sampson,
	Director, Facilities Operations		Assistant Director, Environmental Services
Х	UI: Brian Johnson	Χ	Pullman: Cara Haley (Chair),
	Utilities Engineer / P3 Liaison		City Engineer
Х	Moscow: Tyler Palmer (Vice-Chair),	٧	Pullman: Shawn Kohtz,
	Deputy Director Operations		Director of Public Works
Χ	Moscow: Gina Taruscio,	Χ	Pullman: Eileen Macoll,
	City Council Member		City Council Member
٧	Moscow: Mike Parker,	Χ	Whitman County: Mark Storey,
	Water Utility Manager		Public Works Director/County Engineer
Х	Latah County: Paul Kimmell,	٧	Whitman County: Tom Handy,
	Citizen/County Representative		County Commissioner
	Latah County: Tom Lamar,		
	County Commissioner		

Visitors and Others:

See meeting video recording beginning at (00:00:45)

Call to Order: Cara Haley called the meeting to order at 2:01 PM.

1) Introductions
See meeting video at (00:00:45)

- 2) Approval of Meeting Minutes: March 17, 2022 See meeting video at (00:04:44)
- * * Motion passed to approve minutes
- 3) Public Comment for Items not on Agenda See meeting video at (00:05:22)
- Presentations/Discussion
 - Tracking Recharge through the Ambient Seismic Field Quinn Buzzard (00:07:28)
 - Basin Boundary Modifications (00:42:00)
- 5) Unfinished Business

See meeting video at (00:50:02)

- PBAC Executive Director Position Vacancy (00:50:02)
- 6) New Business (note: agenda item considered out of order as Item 7)
 See meeting video at (00:56:50)
 - Rescission of UI Research Voting Member Status (00:57:00)
- 7) Subcommittee Reports (00:52:12) (note: agenda item considered out of order as Item 6)
 - Budget (00:52:12)
 - Communications (00:52:48)
 - Research (00:55:30)
- 8) Other Reports and Announcements See meeting video at (01:09:02)
 - Good of the Order (01:09:08)
 - Alternative Water Supply Project (01:10:24)
 - ** Motion passed by 4 research funding entities to authorize the City of Moscow to extend the project through the end of August with no financial impact of the time alteration (no cost extension).
 - NSF Civic Planning Grant Proposal Letter of Support (01:14:18)
 - Next PBAC Meeting Thursday, May 19, 2022, 2:00 pm, UI (01:18:14)
- 9) Adjourn
 - ** Motion passed to adjourn meeting at 3:20 PM PDT (01:18:50)

Minutes reviewed and approved at the May 19, 2022 PBAC meeting.

Tracking Aquifer Recharge:

never-ending question of input to our groundwater

Quinn Buzzard, Water Resources

Advisor: Jeff Langman, Geology

Aquifer system recharge

- Conceptual model: recharge zone along Moscow Mountain
- Isotope study linked snowpack reservoir to recharge
- How can we estimate recharge without drilling wells?

Water level and pressure

- Increased water level = increased hydraulic pressure
- Increased hydraulic pressure = decreased seismic wave velocity
- Seismic wave velocity changes = water level changes

Compaction

During compaction, water is squeezed out of loose sediment and grains may eventually all be in contact.

What are we recording?

- Installed 11 seismometers across the recharge zone (arc)
- Looking at low frequency waves = ambient perturbations

Seismometer output

- Raw spectra reduced to target range
- Convert to a change in velocity
- Correlate to relative change in water level

Seismic wave to water level

- Lots of transducers, only one in the recharge zone
- All seismometer results will be correlated to changes in Elliot well

Applying the results

- Water level, saturated thickness, hydraulic gradient:
 - Recharge volume calculation by season

Final Stations

- Seismic data was refined to "usable data"
 - Usable data is low frequency waves recorded within a specific range (2-4hz)
- 11 stations reduced to usable 6 stations.

Seismic Velocity and Groundwater

Seasonal relationship between water level and seismic velocity

Estimating Groundwater Level

- Accurate up to .5m (1.5ft)
 of transducer
 measurement
- Underpredicts high water levels and over predicts low water levels
- Has potential to expand groundwater monitoring networks

Results

- Recharge estimate of 255,085 cubic meters per year (67.4 MGY) across network
- Much higher then PBAC groundwater model estimate of 26,250 cubic meters per year (6.9 MGY) over same area
- Higher recharge rate indicates fast recharge pathways along the mountain front interface.
- Recharge is spatially variable across the interface.

Spatially Variable Recharge

- Western segments (A,B,C)
 much smaller volume than
 eastern segments (D,E,F).
- Attributed to higher conductivity, thicker saturated interval, higher hydraulic gradient.
- Eastern half of network constituted 78% of total recharge across network

Geology

- Western half has higher clay content
- Bedrock was shallower in the west and deeper in the east
- Hydraulic gradient was higher in east

Network	Hydraulic	Saturated	Station	Hydraulic	Potential	Adjusted
segment	conductivity (m/d)	thickness (m)	distance (m)	gradient	recharge (m³/d)	recharge1 (m3/d)
A	0.0235	35.7	1,812	0.0303	46	46
\mathbf{B}^{1}	0.0329	45.8	1,253	0.0305	57	81.5
C_1	0.0329	39.1	1,500	0.0549	106	
\mathbf{D}^{1}	0.0423	45.0	1,883	0.0804	288	273
\mathbb{E}^1	0.0423	72.0	1,927	0.0436	258	
F	0.0517	76.8	1,130	0.0627	281	281
	Network sum (m³/d):					

Fast Pathway

- Comparison to previous study (Behrens et al 2021)
- Fast pathways located along the eastern/central portion of the mountain front interface.

Fast pathways composed of eroded bedrock (granite) and paleo-

channel stream deposits

Next Steps

- Incorporate fast recharge pathways into groundwater model
- Re-evaluate geology to include paleo-channel deposits and decomposed granite.
- Calibrate groundwater model to new recharge estimate (in appropriate area).
- To account for spatially variable recharge, break recharge zones into more segments.

Summary

- Annual recharge across study area is 255,085 cubic meters per year (67.4 MGY).
- Much higher then PBAC groundwater model estimate of 26,250 cubic meters per year (6.9 MGY) over the same area.
- Recharge is spatially variable, more recharge (fast pathway) in eastern portion of network.